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On the Nicolai map and Witten index for two-dimensional 
supersymmetric magnetic field systems 

D Bollei, P Dupontt and D Roekaerts§ 
Instituut voor Theoretische Fysica, Universiteit Leuven, 8-3030 Leuven, Belgium 

Received 20 January 1987 

Abstract. Various aspects of two-dimensional supersymmetric quantum mechanical systems 
with magnetic field are studied. In particular, Nicolai maps are obtained and an associated 
stochastic interpretation in terms of a Markovian process with non-potential forces is given. 
The evaluation of the Witten index in both the heat kernel and resolvent regularisation 
scheme is considered. An explicit calculation of a specific model is presented, clarifying 
how the non-integer value of the index is built up. 

1. Introduction 

The investigation of supersymmetric quantum mechanical systems is of current interest. 
They serve as a framework to test and understand specific properties of realistic field 
theories. The questions considered in this paper are related to, firstly, the stochastic 
structure in certain supersymmetric theories and, secondly, the breaking of supersym- 
metry studied via the Witten index. 

Close connections between supersymmetry and stochastic processes were first 
noticed by Parisi and Sourlas [ 11. They discovered the supersymmetry of the Lagrangian 
of a Markovian process with potential forces. On the other hand, Nicolai [2] proposed 
a characterisation of supersymmetry through the following property of the functional 
integral: after integrating out the fermionic fields this integral becomes Gaussian by a 
transformation of the bosonic variables (Nicolai map). The connection between these 
results was pointed out in [3,4]. 

An important example where the Nicolai map is known explicitly for some cases 
is supersymmetric quantum mechanics. In particular the dependence of the Nicolai 
map on the boundary conditions (fermion sector structure) has been studied recently 
[5-71. In this paper we construct new Nicolai maps for two-dimensional sypersym- 
metric quantum mechanical systems with magnetic field and show that the associated 
stochastic process is a Markov process with non-potential forces. To our knowledge 
the connection between supersymmetry and this type of stochastic process is new. 

To study sypersymmetry breaking, Witten [ 81 introduced a quantity A, counting 
the difference in the number of bosonic and fermionic zero-energy modes. In the 
presence of a continuous spectrum extending down to zero, this quantity, called the 
Witten index, has to be regularised. Many authors have studied this (regularised) 
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Witten index in supersymmetric quantum mechanics (for a review see [9]). In these 
studies it was realised that this index can be fractional, for example, due to the 
occurrence of zero-energy resonances. Recently a new method has been presented to 
study supersymmetric quantum mechanics, in particular the Witten index, using Krein's 
spectral shift function [lo]. In this paper we present some new remarks about the 
properties of the Witten index for magnetic field systems in both the heat kernel and 
resolvent regularisation schemes. We also describe a complete explicit scattering theory 
calculation of a specific model explaining in detail how the non-integer value of the 
Witten index is built up. 

The rest of this paper is divided into three sections. In 0 2 the class of systems 
considered here is defined and the stochastic process with non-potential forces associ- 
ated with the Euclidean Schrodinger equation is obtained. In 0 3 the functional integral 
representations of transition amplitudes for Euclidean time are written down. The 
fermionic degrees of freedom are integrated out and Nicolai maps are found. In 
addition, for rotationally symmetric magnetic field systems a stochastic process and 
the Nicolai map associated with the radial Schrodinger equation are given. In 0 4 we 
first consider the existence of a Nicolai map for the Witten index. Next, we discuss 
the calculation of this index, starting from its path-integral representation, using scaling 
properties and topological invariance. We finally present a complete scattering theory 
treatment of a specific rotationally symmetric model. In the appendix we show how 
the two-dimensional magnetic field system can be obtained from a superspace approach. 

2. Stochastic process associated with the Schrodinger equation 

In this work we study various properties of the supersymmetric quantum mechanical 
system [ l l ]  with Hamiltonian H and supercharge Q defined by 

Q = ( :  "6) 

with 

A = -id, - a , ( q )  + i ( ia2+ a , ( q ) )  ( 3 )  
where a, = a /aqJ ,  j = 1,2 .  Then 

H, = f [ ( - iV - a ) ' - ( - 1 ) / b ]  j = 1 , 2  (4) 

with 

b ( q )  = ( ~ , 4 - d * a , ) ( q ) .  ( 5 )  

Here a = ( a , ,  a*) is the vector potential and b is the magnetic field. 
In  this section a Markovian stochastic process will be associated with H ,  and H 2 .  

It turns out that these processes belong to a class for which, as far as we know, no 
relation with supersymmetry has been found before. 

In [12] Graham has given a method to associate a stochastic process with the 
Schrodinger equation for a particle in a scalar potential V ( q )  and a magnetic field 
described by a vector potential a ( q ) .  Here we use this method and show that this 
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process can be characterised completely, in contrast with the general case, since by 
supersymmetry explicit knowledge of the ground state is available. 

First we consider the general Schrodinger equation (here q = ( q ' ,  . . . , q d ) ,  d EN) 

i$(q, 1 )  = M-iV - a ( q ) ) * +  v(q)I+(q, t ) .  (6) 

Let t,b"'(q) be a ground state and  let the gauge be uniquely fixed by the requirement 
that + ( ' ) ( q )  is real and positive. In this gauge the ground-state energy is zero, + ' " ( q )  
can be written as 

+ ' O ) ( 4 )  = exp(-+(q)) ( 7 )  

v * a - 2 a .  v4  = o  ( 8 )  

which defines + ( q ) ,  and (6) leads to 

v+&z2=;[(V4)2 -V'+]. (9) 

9(9, t )  = +('Yq)t,b(q, t )  (10) 

-i'k(q, t )  = $V2Q(q, 1 )  -V * ( K ( q ) q ( q ,  t ) )  (11) 

K ( q )  = -V+(q)+ia(q) .  (12) 

The quantity 

satisfies 

where 

With the complex equations (11) and (12) can be associated the following real 
equations: 

w q ,  r)=tV'W(q,+V - ( H ( q , A ) W ( q ,  7 ) )  (13) 

K ( q ,  A)=--Vd(q)-Aa(q) .  (14) 

If (13) and (14) can be solved for arbitrary A then Y(q,  t )  can be obtained from W(q,  7) 
by the analytic continuation 

r + i t  A + -i. ( 1 5 )  

Equation (13) can be interpreted as the Fokker-Planck equation of a Markovian 
stochastic process with Cartesian diffusion matrix and drift vector K ( q ,  A ) ,  W(q,  7) 
being the probability density of the random variable q at time r. For more details and  
a discussion of the properties and the physical meaning of this stochastic process we 
refer to [12]. 

Here we recall that an  important and useful classification of Fokker-Planck models 
is based upon the properties of the stationary drift velocity which in our case, for 
natural boundary conditions, is given by -Aa(q ) .  The following three classes of models 
can be distinguished (see [13] for a systematic treatment): 

(i) a=O 

(ii) a # O  V . a = O  (16) 

(iii) V * a # O .  

The first class are stochastic processes with potential forces. The first two classes are 
characterised uniquely by the requirement that the weak noise asymptotic solution 
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coincides with the exact solution. In [ l]  the connection between models of class (i) 
and supersymmetry is established. In [14] it is shown that with all supersymmetric 
quantum mechanical systems defined by Lagrangians constructed from real uncon- 
strained supervariables a stochastic process belonging to this class is associated. 
Therefore a connection between supersymmetry and stochastic processes with non- 
potential forces can only be obtained for Lagrangians constructed from constrained 
supervariables. The systems under consideration here have this property (see the 
appendix). We indeed find that they are associated with processes of the second class. 

A difficulty of the procedure (6)-( 14) is that the drift vector of the stochastic process 
(14) is only completely characterised when the function 4 ( q )  and therefore the ground 
state + ( O ’ ( q )  is known explicitly [12]. It is a nice feature of supersymmetric systems, 
in particular of H,, j = 1,2 ( (  1)-(5)), that information on possible ground states is 
available. For these Hamiltonians the Schrodinger equations are 

i$,(q, t )  =f[(-ic - a ( q ) 1 2 -  ( - ~ ) ~ b ( q ) I + , ( q ,  t )  j = 1,2. (17) 

a ( q )  = (a24(q)+alx(q) ,  - 6 4 ( q ) + & x ( q ) )  (18) 

We write the vector potential as 

with 4 ( q )  and x ( q )  arbitrary smooth functions. Since x ( q )  is a gauge potential, the 
magnetic field only depends on 4(q) ,  namely 

b ( q )  5 - W ( q ) .  (19) 
A candidate for a zero-energy ground-state wavefunction for H,, j = 1,2,  can be written 
down immediately in closed form. In the gauge where x=O it is real and given by 

ILj0)(4) = exp[(-lY4(q)l j = l , 2 .  (20) 
Only if the normalisability condition 

j- dql*L:O’(q)I2 < 03 (21) 

is satisfied, then +j0’ is an element of the Hilbert space of the quantum system and it 
represents a true ground state. In the absence of normalisability the associated stochas- 
tic process does not have a stationary probability distribution, i.e. it is only defined 
for a finite time. 

From the foregoing results we conclude that the stochastic process associated with 
the pair of supersymmetric Hamiltonians H,, j = 1,2, given by (4), (18) and (19) is a 
two-dimensional Markovian stochastic process with unit diffusion matrix and drift 
vector 

q q ,  A )  = ( - 1 ) J & 4 ( q ) - A 8 2 4 ( q )  

K,2(4, A )  = ( - lYa24(q)+A&4(q)  j = l , 2 .  (22) 
In the case that $j0 ’ (q)  is normalisable, (-A&$, A d , + )  is the stationary drift velocity. 
Since the latter is non-zero and its divergence is zero the stochastic process falls into 
class (ii) (16). 

Finally, we remark that an alternative characterisation of the stochastic process 
with Fokker-Planck equation (13) is given by the stochastic differential equations 

(23) 
where 9 is Gaussian white noise (see, e.g., [12]). In  the next section it is shown that 
(23) with K ( q ,  A )  given by (22) for A = -i plays the role of a Nicolai map in the 
Euclidean functional integral. 

4(7) = K ( q ,  A ) +  9 ( T )  
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3. Nicolai map 

In  this section we obtain Nicolai maps [2-41 for the supersymmetric system with 
Hamiltonian H given by (2)-(5). 

In order to derive a representation of transition amplitudes by a path integral over 
commuting and anticommuting coordinates we introtuce can:nical operators 4 and 
p* and fermionic creation and  annihilation operators $+ and q5 satisfying 

{ j + ,  j }  = 1. (24) 

Then HI is the Hamiltonian in the 'bosonic sector' (states annihilated by 6) and H2 
is the Hamiltonian in the 'fermionic sector' (states annihilated by $+). 

Following standard methods [ 15, 161, transition amplitudes of the quantum theory 
for Euclidean time T = it, i.e. 

I K  =(Q;  kIexp(-~H)IQo; k) k = 1 , 2  (26) 

where k denotes the sector, can be represented by the path integral 

where 

E = T / (  N + 1) 

q N + 1 =  Q q o  = Qo 

and 

(29) 
Here li and l:, i = 0, . . . , N + 1, are pairs of complex conjugate Grassmann variables. 
The quantities gk, k = 1 ,2 ,  containing the boundary conditions are given by [SI 

g , =  exp(-l0*50) (30) 

g2 = exP(-GlN+l) .  

A shorthand notation for (27)-(31) is 

where L is the following supersymmetric Lagrangian: 

L =  L l +  L2 (33)  
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det arlj = det 

First we recall, proceeding formally, the definition of a Nicolai map [2-41. After 
integrating out the Grassmann variables J(  t ' )  and J*(  t ' )  in (32) one obtains an effective 
functional integral over commuting variables q (  t ' )  only, namely 

I /  E + f (  - 1 )"alal 4 - fia 1a24 f( - 1 ) "aza1 4 - fia2a24 

where 

J k [ q ( f ' ) l =  BJ(t ' )aJ*(f ' )  exP( -1: L2 d f ' ) g k ( i ( 0 ) ,  ( (7 ) ) .  (37)  

A Nicolai map for the functional integral (32)  is then a transformation of variables 
q +  q which fulfils two requirements: (i) L1 is reduced to a quadratic form (apart from 
a total time derivative); (ii) the Jacobian of the transformation cancels J k [ q ] .  As a 
result of the transformation the path integral is brought into Gaussian form apart from 
non-trivial boundary conditions. 

Next, we consider the first requirement. Using (18) the bosonic Lagrangian L,  can 
be written as a sum of squares modulo a total derivative in several ways. Writing 

L ,  = f [ q l  + ( - I ) " ( J ~ ~ )  - i(a24)I2 +t[q'+ (--1)"(a24) + i(a,4)12 + ( - 1  )"$ - i i  

m = l , 2  (38)  
one can see that candidates for a Nicolai map are 

To prove that (39) is indeed a Nicolai map for I k  with k = m we now proceed to a 
precise treatment of the second requirement in the discrete representation. By perform- 
ing the integration over Grassmann variables in (29) one obtains 

where we have used the fact that the difference between Eb(q,) and 
in the limit N + w .  A possible discrete representation of the maps (39) is 

is negligible 

77: = ( q ~ - q ~ - l ) / & + ( - l ) " ( a 1 4 ) ( G , ) - i ( a 2 4 ) ( G , )  

7; = (q ;  - 4;- 1 )/ E + ( - 1 )  " (824  xi, ) + i(a1 4 IC4 ) 
with 

j = l ,  . . . ,  N + l ; m = 1 , 2  (41) 

G, = fk, + 6 - 1 ) .  (42) 
The Jacobian of the transformation q l ,  . . . , q N + l +  q l , .  . . , qN+l  through (41) and (42) 
is 
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Comparing (40), (43) and (44) one concludes that (41) with m = 1,2 is a Nicolai map 
for I k ,  k = 1,2, respectively. (The prefactor 1/&’ in (44) is absorbed in the volume 
element and, as before, the difference between b(4,) in (44) and b ( q j )  in (40) does not 
contribute in the limit N + 00.) 

We remark that in [17] a magnetic field system in four dimensions has been 
discussed, one of the conclusions being that a Nicolai map only exists in the case of 
a constant field. 

The existence of a Nicolai map is independent of the coordinates used provided 
that the path integral is defined in a covariant manner (see [16], ch 6). For example, 
using the methods of [18] it can be shown that the path integral in polar coordinates 
(4 ’  = r cos e, q2 = r sin e)  

I k  = lr*’ Brge9iBi* exp( - 1; L df‘)gk(i(0), l(7)) (45) 
ro. Bo 

where 

L = i ( i 2 +  r 2 h 2 )  - i ( i / r ) (a&) +ihr(ar4)  - i i +  t*(-a/at’-Ad)i (46) 

has the Nicolai map 

~ ‘ c o s  8+T2s in  e =  i+(-1)k(ap4)- i (aB4) 
-(I /  r)[T1 sin e - v2 cos e] = h + (- 1 ) k ( ~ /  r ) ( a , 4 )  + ( i / r ) (ar4) .  (47) 

An interpretation of the Nicolai maps (39) or (47) as stochastic differential equations 
is only possible by introducing a parameter A as discussed in § 2. Then the discretisation 
given by (41) and (42) defines the stochastic differential equation in the sense of 
Stratonovich. 

We conclude this section with a remark on rotationally symmetric systems which 
will be considered in more detail in the next section. When 4 ( q )  in (18) only depends 
on r = ) q )  the Schrodinger equations (17) are separable in polar coordinates. Writing 

one has that u ] , ~  and u2,1 satisfy 

The Fokker-Planck equations associated with (49) and (50) via the procedure outlined 
in 9 2 are 
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The associated stochastic differential equations 

r =  (-1y j = l , 2  
r (55) 

play the role of a Nicolai map in the path integral solution of (49) and (50), respectively. 
These path integrals can be obtained by making the change of variables to polar 
coordinates in the discrete representation (27) and (28) with J P  given by (40) and 
integrating out the angular variables. 

4. Witten index 

In this section we first make some remarks about the existence of a Nicolai map for 
the Witten index of two-dimensional magnetic field systems. We then discuss its 
calculation starting from its path integral representation, using scaling properties and 
topological invariance. We also give a complete scattering theory treatment for a 
rotationally symmetric system, employing recent results on low-energy scattering 
[ 19,201. These discussions amplify the results appearing in [ 10,20,21], giving new 
important details of the problem as we will see in the course of the derivations. 

In supersymmetric quantum mechanics, the Witten index [8], A, counts the 
difference betweeen the number of bosonic and fermionic zero-energy modes of the 
Hamiltonian. If the threshold of the continuous spectrum of H,(H,) extends down 
to zero, which is the case in the systems we consider, the Witten index has to be 
regularised and one writes, for example, in the heat kernel regularisation 

A = lim A @ )  (56) 

A @ )  = Tr[exp(-PH,) -exp(-PH2)1. (57) 
P+W 

Following the treatment in § 3 we arrive at a formal expression for A @ ) ,  namely 

where, in comparison with (27), due to the extra integration because of the trace 

Concerning the existence of a Nicolai map for the Witten index (58), we have 
found that the transformation (39) and (41) leads to a Jacobian zero in the case of 
A(p), again because of the extra integration coming from the trace. (This is in contrast 
with the one-dimensional Witten model for which one can show that the Nicolai map 
for a matrix element of the type (26) is also a Nicolai map for the corresponding 
Witten index.) In this context we mention that in [22] it has been shown that, by 
allowing complex gauge transformations, a Nicolai map can be found for (58) in the 
sense that the fermionic determinant is cancelled by the Jacobian and the bosonic 
action becomes bilinear. After certain approximations, A(p) can be calculated in this 
way to find 

A(p) = A =  - F  (60) 
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where F, the flux, is given by 

F =  ( 2 ~ ) - ‘  I d2qb(q).  

An alternative procedure to obtain (60) starting from (58)  is to use topological 
invariance and  scaling properties. Firstly, it has been shown that the regularised Witten 
index is invariant under sufficiently small perturbations of the operator A (see (1)),  
i.e. under compact deformations of the potential. This result, called topological 
invariance, has been demonstrated in the heat kernel regularisation (56) and (57)  in 
[23] and in the resolvent regularisation in [ 101 (we refer to the latter for exact details 
on the nature of the perturbations). Secondly, we derive some scaling properties for 
A @ ) .  For this purpose, we concentrate on a specific model which has been considered 
first in [24] in connection with the study of the nature of the Dirac spectrum in the 
presence of localised gauge vortices (see also [10,21] and references therein). In 
particular, we take 

a = (a*+, -&9) 

such that 

and (61) is satisfied. Defining the unitary group of dilations in two dimensions to be 

(Usg)(q) = s - ’ g ( q / s )  s > o  (64) 
with g a square integrable function, it is straightforward to check that in this case the 
Hamiltonians Hj, which now depend on R, satisfy 

U,q.(R)U;’= s2Hj(sR) j = l , 2 .  (65) 
This result immediately implies, starting from ( 5 8 ) ,  that 

U P ,  R )  = A ( P / S ’ ,  R / s )  (66) 

since we know that jPBC 9 q ( t )  is invariant under this scaling (see, e.g., (59)). 
Together with the topological invariance, that can be written in the form 

A@, R )  = N P ,  R / s )  

U P )  = A(P/S’) (68) 

(67) 

(66) implies that A cannot depend on R, such that 

or, in other words, A is P independent. We then compute the constant value of A by 
using heat kernel expansion techniques for P + 0 [ 10,251 to find the result (60). It 
would be interesting to see if this method can be successfully applied to higher- 
dimensional models. At this point we recall that the two-dimensional magnetic field 
system is not Fredholm (the operator A is Fredholm if and only if the infimum of the 
essential spectrum of A*A is strictly positive), such that the Fredholm index, an  integer 
defined by i(A) = [dim ker(A) -dim ker(A*)] = [dim ker( HI)  -dim ker( H,)] differs, in 
general, from the Witten index A. 
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Especially these nowFredholm systems have been studied recently in the resolvent 
regularisation scheme ([ 10,211 and references therein). In particular the model (62) 
has been treated by scaling techniques similar to those discussed above. In the rest 
of this section we want to present a complete scattering theory description of this 
model, employing Jost function techniques [26] and new results on low-energy scatter- 
ing [lo,  201. The advantage of this method is that it tells us precisely which zero-energy 
states contribute to A and why some states give non-integer contributions. After 
finishing this calculation, we became aware of a computation of the anomaly for a 
system of fermions in two (spatial) dimensions interacting with a localised rotationally 
symmetric magnetic field, where similar scattering techniques are exploited [ 271 (see 
also [28]). 

The resolvent regularised Witten index is [29] 

A = lim A (  z) 
2 - 0  

A ( z ) =  -zTr[(H,-z)-’-(H,-z)-’] .  (70) 

For spherically symmetric systems it is known that these formulae lead to 

where S12,/(0) is the phase shift for the scattering system H z , r ) ,  normalised to 0 
at infinite energy, at energy zero. As we will see the R H S  of (71)  can be calculated by 
Levinson’s theorem. The two-dimensional magnetic field model (62) can be described 
by the following set of Schrodinger equations (recall (48)-(52)): 

with j = 1,2, I ,  = 1, l2 = 1 + 2  and the partial wavenumber I running from -a to +CO, 

and where F,,,(k,  r )  denote the regular solutions. (The F,,,(k, r )  are the time-indepen- 
dent factors of the uJ+/ in (49) and (501.) We remark that the relative scattering problem 
(Hl,f ,  H2,,) is short-range: HI,,  and Hz,,  only differ by a constant factor ( 4 F ) / R 2  in 
the inside region. 

We now use standard scattering techniques [26] to solve this problem. Most of 
the algebra is tedious but straightforward such that we only give a short description 
of the results. 

The solutions of (72) and (73) for I L 0 are given by 

1 + 2 , 7  
I ,  k 2 R 2  F I J ( k , r )  = r’ t3’2exp(- (F/r2/2R2)1Fl  - + l - ( s g n  F ) - - -  (1 2 41FI’ R 

r s  R 

r>  R 

F,,,(k, r )  = c,(k, R ) r ” 2 J l - F + l ( k r ) + d J ( k ,  R ) r ” 2 k ’ - F + l ( k r )  (75) 

where , F ,  is the confluent hypergeometric function and  JL and YL are Bessel functions 
of order L and where c, and  d, are determined by continuity of e,, and its derivative 
at r = R. In the following we denote L = I - F + 1 .  Looking at  the limit r + CO of F,./( kr)  
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and comparing with the ‘free’ solution Fo,,(kr) that satisfies (73) but now in all space, 
i.e. for all r S R, the phase shift S j T , ( k )  can be obtained as usual from 

Next we know that the irregular solution of our Schrodinger problem for 1 0 is given 
by 

with U the irregular confluent hypergeometric function and H y ’  the Hankel function, 
where aJ and b, are again determined by continuity requirements and a, by the 
requirement that the Wronskian W (  Go,l, Fo,l)r = 1. Finally, the Jost function 9J,,l( k )  
for la0 is given by 

= w(GJ, l ,  e,!) 

We now want to study the k + 0 behaviour of the Jost function PjSl(k). We start 
with j = 1. The limit k + O  of the ,F,  function is not transparent. The trick is then to 
use the known relation 

F,,I(O, r )  = Gl,l(O, r )  (79) 

such that one obtains for the first term in the Wronksian (78) the following formulae: 

(80) (21 + 2)r-1-”2 exp(Fr2/2R2) d t  t2’+’ exp( -Ft2 /  R2) + O( k2). I: 
Using then the k+O behaviour of the Hankel function one arrives at the results 

k - 0  
9 1 , 1 ( k )  = -[ln(ikR)](21+ 2)R1+’ exp(-F/2) + O(ko) L = O  

The same study can be made for j = 2 starting directly from (78) since the , F1 term is 
now, in the limit k + 0, 

(82) r 1 + 3 / 2  exp( -Fr2/2R2) + O( k2).  
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One obtains 

92 .1(k)  *-Oexp(-F/2)RF+O(k' In k )  L=O 

= O( k2)  L s  -1. (83) 
for 12 0, has a 

typical generic behaviour at k = 0, i.e. there are no zero-energy resonances or zero- 
energy bound states. From (83) we learn that for H 2 , 1 ,  12 0, we get a two-dimensional 
s wave resonance behaviour for L = 0. For L > 0 we have again generic behaviour 
while for L < 0 zero-energy bound states occur if 1 LI 2 1. However, if 0 < 1 LI < 1 in this 
case we see a behaviour of the type k2IL'. The latter is an  explicit realisation of the 
results discussed in [20]. 

The same analysis can be made for 1 < 0. We d o  not give any detailed formulae, 
we just remark that some care is needed when treating H2,1 for 1 = -1. For HI,/, 1 < 0 
we get the behaviour of H 2 , / ,  12 0 with L replaced by -L. For Hz, l ,  1 < 0 we get the 
behaviour of HI,/, 1 2  0 so there are no zero-energy resonances or bound states, except 
for 1 = - 1 .  In the latter case we d o  get zero-energy bound states for L = - F < 0 and 
IF1 > 1 while we see again the k21r1 behaviour for IF1 < 1. 

This completely describes the possibilities of having zero-energy states. Since 
and  H2, /  are non-negative there are no negative-energy bound states. In order to extract 
Levinson's theorem from this information we have to check the normalisation of the 
phase shift 6,,,(k) by looking at its behaviour for k + w .  This can be done, e.g., 
employing (76), the asymptotic behaviour of IF1 with respect to the first parameter 
[32] and  the asymptotic behaviour of Bessel functions. The result is 

Interpreting these results [19,20,30,31] we see from (81) that 

Since the relative H2, / )  scattering problem is short-range, we can require, without 
loss of generality, the relative phase shift 6 1 2 , / ( k )  to be defined such that mI,/ = m2,/ 
and misl = mi,l. 

Using all the foregoing information Levinson's theorem can then be read off from 
the following table of contributions. We take, e.g., F > 0 and  we recall L = 1 + 1 - F. 

S,,,(O) 1<0  / = - I  1 2 0  1 3 0  
/ #  -1  L = - F < O  L<O L > O  
L<O 
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where we have used (84) in the first step and [ F ]  denotes the integer part of F. So 
by using (71 )  we find (60). We thereby explicitly see that only the partial waves starting 
from 1 = -1 up to 1 < F - 1 contribute to the Witten index. Those with 1 = -1 up to 
1 = [ F ]  - 2 are zero-energy bound states and they each contribute 1; the highest allowed 
partial wave, 1 = [F] - 1, contributes ( F  - [ F ] ) .  The latter corresponds to the k2IL’ 
behaviour of 9 2 . , ( k )  at k+O found in (83). 
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Appendix 

The Lagrangian (33)-(35) can be obtained in the superspace formalism by considering 
constrained supervariables as follows (see also [33]). 

Let cPP, p = 1 ,2  be real supervariables defined on the superspace parametrised by 
( t ,  e, e*),  namely 

4 F ( t ,  e, e*)= q ” ( t ) + e + P ( t ) + + * * ( t ) e * + e * e f P ( r )  p = 1,2.  ( A l l  
Instead of treating q, +, +* and f as independent variables as was done in E141 we 
choose to impose the following constraint, compatible with supersymmetry: 

(A2) ~ ~ ( 4 ’  + i42) = 0 

where De is the invariant derivative 

De=--ie*-  a a 
ae  at ’  

In the language of field theory this makes ( + ‘ + i d * )  a ‘chiral’ supervariable. 

41 and 42:  
Equation (A2) is equivalent to the following relations between the components of 

$ + f L O  

q 2 - f L O  

*‘+i+* = 0 
**‘-i**2=0. 

Imposing these constraints on the supersymmetric Lagrangian 
L = 1 2q  ‘ P  q . P  +- $@f* + f P W . ,  +ti($*$*@ - + P $ * + )  

++W,,“(**”$” - *V*”) (‘45) 

Z(4 ,  De41 =+(~e4w)(Ds4P’ ) *+  W ( 4 )  (‘46) 

(where the notation ,P means the derivative with respect to q P )  which have been derived 
in [14] from the superspace expression 

and introducing the notation $ = G’, 4 = 1 W and the Euclidean time T = i t  one obtains 
the Lagrangian of the magnetic field systems. 
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